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ABSTRACT 
There are several ways to obtain the set of frequency responses all around a loudspeaker, the so-called directivity 

balloon which provides useful knowledge about the loudspeaker radiation behavior. In this paper, a novel method 

for collecting far-field directivity balloon datasets is presented. This alternative method builds on traditional polar 

measurements and proved to be practical both in terms of measurement time and equipment set-up. By cleverly 

combining datasets and by using far-field wave propagation, datasets in cylindrical coordinates are created and 

then projected on a sphere. Eventually, using a spherical interpolation, the directivity balloon is obtained.

1 Introduction 

A directivity balloon dataset describes how a sound 

source radiates into 3D space at a certain radius. For 

a loudspeaker, it provides a way to extract important 

parameters such as the traditional horizontal and 

vertical −6𝑑𝐵 coverage angles, the directivity factor 

and the acoustic power. The frequency response at 

any point in space in the far-field of the loudspeaker 

can also be obtained, which makes directivity 

balloons important for sound system simulation 

programs. There are a few measurement methods to 

obtain directivity balloons. In this paper, a novel 

method is presented, providing a new way to obtain 

far-field directivity balloons in an acceptable amount 

of time. It makes use of a simple procedure and some 

processing involving 3D geometry. 

 

In Section 2, current measurement methods and the 

associated research will be shortly presented. Then, in 

Section 3, the far-field directivity balloon and its 

coordinate system will be defined. The new 

measurement method will be explained in Section 4. 

2 State of the art 

Before 3D directivity balloons, directivity data was 

only available in 2D planes, usually a horizontal and 

a vertical plane, forming the two main polar responses 

of a sound source. In the 80’s, with the computer 

power and storage increase, the first 3D directivity 

balloons appeared and brought all the rest of the 

spatial information which traditional polar plots were 

missing. Simulated 3D directivity balloons were 

introduced ([1]). Later, real-world measured 3D 

directivity balloons appeared as well as the first 

graphic sound system design programs using these 

datasets ([2] and [3]). 

2.1  Current measurement methods 

The most straightforward method to obtain the 

directivity balloon is to directly measure the source 

response at all the points on the sphere defining the 

balloon dataset ([4]). This can be done with a 

microphone moving around the source to capture the 

response at every point needed. Equivalently, one can 

use a moving source and a microphone at a fixed 

position. Alternatively, a sphere discretely sampled 

with microphones can be placed around the source in 

order to measure all points at once. In practice, one 

can use a combination of moving parts and 
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microphone arrays: usually, an arc-array of 

microphones is used along with a rotary table on 

which the source is mounted. 

 

Recently, a new method was introduced ([5]). It 

consists of scanning the near-field all around the 

source at a very close distance. Then, a set of 

spherical harmonic modes of a given order can be 

fitted to the measured near-field. This expansion can 

finally be used to extract any balloon beyond the 

measurement distance, and in particular, the far-field 

directivity balloon. 

2.2  Additional research 

The directivity balloon measurement methods are 

traditionally performed in an anechoic environment 

because otherwise there are unwanted acoustic 

reflections in the measured impulse responses. 

Nonetheless, measuring in a non-anechoic 

environment is still possible as there exist some 

techniques to remove these reflections. For instance, 

measurements of impulse responses can be time-

windowed to remove the undesired reflections. This 

method works best at high frequencies. At low 

frequencies, field separation techniques can be used 

([6] and [7]). 

 

Some additional research papers on directivity 

balloons’ reliability, especially when used in sound 

system simulation programs, have added more 

knowledge to the topic. For instance, it has been 

shown that using complex data rather than 

magnitude-only data led to large improvements in 

accuracy when simulating the radiation of several 

sound sources used together ([8]). 

3 Definitions 

3.1  Directivity balloon 

A balloon dataset is a collection of the frequency 

responses of a sound source in every direction around 

it and at a given distance. The data includes the 

magnitude and sometimes also the phase of the 

radiated sound waves in the frequency range of 

interest. 

 

In this paper, the focus is on far-field balloons as they 

are used by many acoustic simulation programs. It is 

well known that, using the far-field approximation, 

any sound source can be modelled as an equivalent 

point-source with spherical wave expansion and 

sound pressure varying inversely as distance. This 

results in a directivity pattern which is constant with 

distance. Therefore, the sound pressure at any 

distance can be extracted from a single balloon 

dataset, provided that the far-field approximation is 

valid. To do so, it is simply a matter of taking the 

measured frequency response in the direction of 

interest and applying the classic phase and magnitude 

propagator 𝐴𝑒𝑗𝜑 , 𝑗 being the unit imaginary number. 

𝐴 and 𝜑 are respectively the magnitude and the phase 

correction factors defined as 

𝜑 =
𝜔(𝑟1 − 𝑟2)

𝑐
      𝑎𝑛𝑑      𝐴 =

𝑟1

𝑟2

, (1) 

where 𝜔  is the angular frequency, 𝑐  the speed of 

sound, 𝑟1  the reference directivity balloon radius 

(usually 1m) and 𝑟2  the wanted distance from the 

source. 

3.2  Balloon coordinate system 

To fully and uniquely locate a balloon dataset in 3D 

space, a coordinate system must be defined. In this 

regard, a reference point, a principal axis of radiation 

and an orientation must be chosen for the sound 

source.  

 

It seems desirable to choose the reference point as the 

acoustic center of the sound source, especially if a far-

field balloon is wanted. Unfortunately, the question 

of the exact location of the acoustic center is a 

complex topic ([9]), and some sound sources such as 

multi-way speakers can have several acoustic centers. 

However, given the error distance between the chosen 

reference point and the actual acoustic center, critical 

upper frequencies of validity have been defined ([10]) 

and the authors have shown that errors on the acoustic 

center location do not have a significant impact on the 

results, as long as phase data is taken into account. 

 

From the reference point, the principal direction of 

radiation is chosen and defines the positive Z 

coordinates. Finally, regarding the choice of the 
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orientation, when looking at the sound source from 

the front, its right-side shall point towards the positive 

X coordinates and its top-side towards the positive Y 

coordinates. From this Cartesian coordinate system, 

one can define the associated spherical coordinate 

system with the elevation angle 𝜑 oriented along the 

Z-axis and the azimuth angle 𝜃 starting at the right 

side of the sound source and revolving around it 

following the right-hand rule along the positive 

direction of the Z-axis. 

A balloon dataset can be stored in a three-dimensional 

matrix: 

1. The elevation angle ranging from −90° at 

the back of the sound source to +90° at its 

front. 

2. The azimuth angle ranging from 0°  to 

360° starting on the right side of the sound 

source. 

3. The frequency. 

Each dimension features a specific resolution: 

angular resolutions for the two spatial dimensions 

(elevation and azimuth) and spectral resolution for the 

frequency. The spatial sampling of a directivity 

balloon with a 5° angular resolution in both azimuth 

and elevation angles is shown in Figure 1. 

4 Cylinder measurement method 

4.1  Principle 

4.1.1 Data collection 

The measurement method described in this paper 

allows to measure the full complex far-field 

directivity balloon of a loudspeaker in a decent 

amount of time. The measurement is performed in an 

anechoic chamber, using one or two microphones, 

and involves some post-processing. 

 

The idea is to collect a set of polar measurements and 

create a balloon dataset from it. 

 

A polar measurement contains the directivity data 

sampled on a circle. This data is easily collected using 

a fixed microphone and by placing the sound source 

on a rotating system. With the simple addition of a 

translation system perpendicular to the rotation plane, 

one can perform polar measurements at several 

heights and therefore obtain directivity data on a 

cylinder (Figure 2a). 

 

The next step is to get data on the sphere. Using the 

far-field approximation, one can use the propagator 

term defined in Equation 1 to project measurement 

points backwards onto the sphere: the distance 

correction is equal to 𝑟2 − 𝑟1 = √𝐻2 + 𝑅² − 𝑅 , 

where 𝐻 is the height and 𝑅 the radius of the sphere. 

 

As can be seen in Figure 2c, this method does not lead 

to constant steps in angular elevation. In order to 

correct for this, the elevation steps can be distributed 

in a better way with the following formula: 

𝐻(𝛼) =  𝑅 tan(𝛼)  where α is the elevation angle 

ranging from −90°  to +90°  with the desired 

elevation angular step (Figure 2b and 2d). 

 

However, it is not possible to cover the full sphere 

because it would require an infinitely long cylinder in 

order to obtain the points at the top and at the bottom 

of the sphere. Therefore, the idea is to combine data 

points from two orthogonal cylinders in order to get 

data on the entire sphere. With a height comprised 

between 𝐻𝑚𝑖𝑛 = −𝑅  and 𝐻𝑚𝑎𝑥 = 𝑅 , a cylinder 

covers a portion of the sphere corresponding to the 

Figure 1. Spatial sampling for a directivity balloon 

dataset with a 5° resolution. Note that the location of 

the points defines an orientation for the sphere along 

the principal axis of radiation, resulting in a denser 

sampling at the poles than at the equator. 
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range −45°  to +45°  for 𝛼 . Thus, by measuring a 

cylinder along the height of the loudspeaker and 

another one along its width, the full directivity sphere 

can be covered (Figure 3). 

 

The sphere can be split into three portions: 

1. The right and left “caps” of the sphere are 

covered with data points coming only from 

the first cylinder. 

2. The top and bottom “caps” of the sphere are 

covered with data points coming only from 

the second cylinder. 

3. The remaining portions of the sphere feature 

data points coming from both cylinders. 

 

 

4.1.2 Spherical Interpolation 

It can be observed that the measured data points do 

not lie at the exact locations of the actual data points 

defining the directivity balloon (see Figure 4). This is 

because the directivity balloon is oriented towards the 

positive Z-axis whereas the two cylinders were 

measured along the Y-axis and the X-axis. To obtain 

the directivity balloon data points, an interpolation on 

the surface of the sphere becomes necessary. 

 

As a first approach, the Inverse Distance Weighting 

method presented in [11] is directly implemented 

because it has proven useful for directivity balloons. 

It is based on a weighted average of the inverse of the 

great-circle distances (shortest distance between two 

points on the surface of a sphere) from the wanted 

point to all measurement points. A variation of this 

Figure 2. Two methods of elevation sampling (a and b) and their derived projection on 

the sphere (c and d). Black dots correspond to sampling points. Only positive values of 

elevation are represented for the sake of clarity. 
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method consists in considering only half of the sphere 

(the hemisphere centered on a given target) and this 

can be generalized to any solid angle by setting an 

appropriate threshold. 

 

Other methods come from the meteorology field, 

where this computational geometry problem is well-

documented ([12]). Some of them involve mapping 

the surface of the sphere on a plane using a map 

projection, then performing the interpolation using 

traditional 2D techniques. There are several map 

projections available ([13]); in this paper, the 

equirectangular projection is chosen. This method 

uses the elevation and the azimuth values as the new 

Cartesian orthogonal coordinate system (see Figure 

5). Even though this projection features large distance 

distortions at the poles, it is chosen for its 

straightforward implementation and because it allows 

to map the entire sphere onto a single plane. Once 

projected, the data is interpolated using a 2D cubic 

algorithm which degree of smoothness and continuity 

is assumed to provide a realistic representation of the 

sound pressure all over the sphere. 

 

For both the Inverse Distance Weighting method and 

the map projection method, amplitude and continuous 

(unwrapped) phase are interpolated separately as it 

has been shown to be the adequate method when 

Figure 3. First cylinder’s measurement points along the height (left plot) and second cylinder’s measurement 

points along the width (right plot). 

Figure 4. Portion of the sphere. Blue (left-pointing 

triangle) and red (right-pointing tringle) markers 

respectively correspond to first cylinder and second 

cylinder measurement data. Black dots define the 

directivity balloon data points. 
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dealing with complex-valued frequency response 

data ([14]). 

 

Finally, in order to ensure a smooth connection 

between data from both cylinders, an additional rule 

is introduced. In the first two portions of the sphere 

defined earlier, only points coming from the 

corresponding cylinder are used. In the third portion, 

where there are measurement points coming from 

both cylinders, the interpolation is calculated twice: 

once with each cylinder’s points. Then the two 

complex values obtained are averaged (amplitude and 

continuous phase separately) using weights defined 

by the following heuristic scheme:  

𝑊1 =
1

2
(cos (

𝜋𝑌

2
)

2

+ sin (
𝜋𝑋

2
)

2

)   𝑎𝑛𝑑 

𝑊2 =
1

2
(cos (

𝜋𝑋

2
)

2

+ sin (
𝜋𝑌

2
)

2

), 

(2) 

𝑊1 and 𝑊2 respectively being used for the first and 

the second cylinder’s measurement points. 𝑋  and 𝑌 

are respectively the horizontal and the vertical 

coordinates of the target point. These weights are 

defined such that 𝑊1 + 𝑊2 = 1. This scheme has two 

advantages: 

1. It provides a smooth transition between the 

data coming from the two cylinders 

2. It favors the measurement points close to the 

vertical and the horizontal planes which 

contain the main traditionally-measured 

polar measurements. These planes also 

correspond to measurement positions where 

the microphone was the closest (implying a 

lower correction distance) and incidence 

angles were the smallest (reducing the 

influence of the microphone polar pattern). 

 

The results show no significant difference between 

the Inverse Distance Weighting method and the 

equirectangular projection method. Therefore, the 

latter is chosen for its simplicity and computational 

efficiency. 

Figure 5. Equirectangular projection of the measurement data and the wanted data. Same markers used as in 

Figure 4. 
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4.2  Application to a real case 

4.2.1 Practical concerns 

The measurement is performed in a full anechoic 

chamber. The distance from the elevation axis to the 

microphones is fixed to 𝑟 = 2m . The loudspeaker 

being measured is an ID24 from NEXO as its 

geometric construction and its asymmetric 120°/40° 

horn lead to a very distinct radiation pattern. There is 

no universal approximation for the far-field critical 

distance but the two criteria 𝑟 ≫ 𝑎  and 𝑟 >
𝜋𝑎2

λ
  

where 𝜆  is the wavelength and 𝑎  is the radius of a 

piston radiator, are frequently used ([15]). The 

loudspeaker measured has a maximum dimension of 

300mm, therefore, using 𝑎 = 150mm, the far-field 

assumption can be made up to around 10kHz. 

 

As can be seen in Figure 6, two microphones are used 

instead of one. This allows to reduce the translation 

needed for the elevation system as well as the height 

of the anechoic chamber by a factor of two. Indeed, 

when the loudspeaker goes up, the bottom 

microphone will cover the lower portion of the 

cylinders whereas the top microphone will cover the 

top portion of the cylinders. However, elevation steps 

defined earlier cannot be achieved anymore for both 

microphones at the same time. While the bottom 

microphone requires elevation steps defined by 

𝑠1(𝛼) = 𝑅 tan(𝛼) with 𝛼 ranging from 0° to 45°, the 

top microphone requires steps defined by 

𝑠2(𝛼) =  𝑅 (1 − tan (
𝜋

4
− 𝛼)). Therefore, in order to 

avoid biasing one microphone, an average step value 

is used:  

𝑠(𝛼) =
𝑠1(𝛼) + 𝑠2(𝛼)

2
 

          =
𝑅

2
(1 + tan(𝛼) − tan (

𝜋

4
− 𝛼)). 

(3) 

 

The measurement is performed by automatically 

driving the rotary table and the lift table when needed. 

At this stage of development, the speaker had to be 

manually rotated 90° between the first cylinder and 

the second cylinder measurement, making the whole 

procedure semi-automated (see Figure 7). 

4.2.2 Result example 

Once the data is collected, the post-processing 

described in the previous section is applied to get the 

final directivity balloon. For example, it allows to 

obtain a 2.5° resolution complex directivity balloon 

dataset in approximately an hour. The time for post-

processing is typically in the range of minutes. An 

example can be seen in Figure 8. 

 

 Figure 6. Setup of the directivity balloon 

measurement. Red rectangles show the location of 

the two microphones. 

Figure 7. Loudspeaker positioning for the 

measurement. Left: first cylinder. Right: second 

cylinder. 
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5 Summary 

A novel measurement method to obtain full complex 

directivity balloon datasets has been developed. This 

method allows to measure a loudspeaker directivity 

balloon in an anechoic chamber with two 

microphones, a rotary table and a lift table, using 

some post-processing and in a relatively short amount 

of time. 

 

The next step is to evaluate the quality of the results 

of this method compared to traditional methods. 
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